On-Line Computing and Control of Multivariable Processes with Specified Gain and Phase Margins

Tain-Sou Tsay

Assistant Professor, Department of Aeronautical Engineering, National Formosa University

ABSTRACT

An on-line computing and control design method is proposed in this literature for multivariable processes. Systematic computing procedures and tuning rules are developed for finding pre-compensators and proportional plus integration with lead compensators. The performance of the compensated systems can be evaluated by keeping wanted bandwidth, phase margins and decoupling characteristics. No iteration for computing parameters is needed. Parameters of PI/Lead compensator can be retuning if they are necessary. Three numerical examples are provided to illustrate the proposed method giving better performance and robustness than those of other on-line computing and control methods.

Key Words: On-line computing and control
Multivariable processes.

Dr. Tsay is with the Department of Aeronautical Engineering, National Formosa University, No. 64, Wen-Hua Road, HuWei, YunLin, 63208, Taiwan. Tel:+886-5-631-5537 Fax:+886-5-631-2415 E-mail: tstsay@ nfu.edu.tw

I. Introduction

The proportional-integration-derivative (PID) controllers have been used widely in industry due to robustness and simplicity. It is well-known that PID controllers have dominated applications for 60 years, though there has been a lot of interest in research into and implementation of advanced controllers. On-line computing and tuning controls are generally applicable for slow industry processes and can be retuning. Åström and Hägglund[1-3] identified the ultimate process information from a relay feedback where the process is activated by the relay. Based on the identified information, parameters of PID controllers can be tuned by many developed techniques[4-7]. The choice of studying PI controllers with Lead compensations and not PID controller in this work evolves from the fact that approximately 90% of industrial PID controllers have the derivative action turn off[8-10]. This is because of noisy measurement environment while faster system responses are wanted; i.e., very low frequency low-pass filter for noise rejection is not allowed. PI controllers usually suffer from wanted faster responses with high performance. Lead compensation can solve this problem. Therefore, lead compensators replace derivative parts of PID controllers.

In this work a pre-compensator described by first order dynamic plus time delay model (FODPT) is first estimated and applied to decouple the multivariable processes, and then parameters of PI / Lead compensator are determined by gain / phase crossover frequency ($\omega_{\rm CRG}$ / $\omega_{\rm CRP}$) and phase / gain margin (PM/GM). Pre-compensator and PI / Lead compensator are basing on the information from identified process, and can be recomputed if they are necessary. Since the gain-crossover frequency of the system is closely related to the bandwidth of the closed-loop system, and the phase-margin is closely related to the performance. Therefore, the proposed method pays much more attentions about response time and performance than those of conventional on-line computing and control methods [1-10]. Fig.1 shows the on-line computing and control configuration of the multivariable process. P(s) is the pre-compensator, K(s) is the PI/Lead compensator, and relays, delays and real time computing block are used to force the closed-loop system to produce sustain oscillations and give information for computing $\omega_{CRG} / \omega_{CRP}$ and PM/GM.

This literature is organized as follows. In Section II, on-line computing and controlling algorithm for decoupling the multivariable process is developed. In Section III, the developed method is applied to three multivariable examples with comparisons of other famous design methods[5,11]. It will be seen the proposed method gives better performance, robustness and decoupling properties than those of other mentioned on-line auto-tuning methods.

II. The Proposed Method

Consider a general $m \times m$ multivariable process G(s) of a feedback control system shown in Fig.1 and given a pre-compensator P(s) defined as

$$P(s) = G(s)^{-1} \det(G(s)) / \det(G(0))$$

$$= adj(G(s)) / \det(G(0))$$
(1)

Then the multivariable system G(s) is decoupled ideally with P(s) for

$$G(s)P(s) = G(s)G(s)^{-1} \det(G(s)) / \det(G(0))$$

$$= I_m \det(G(s)) / \det(G(0))$$
(2)

Since G(s)P(s) is a diagonal matrix, the multivariable design problem becomes one single-input single-output (SISO) design problem.

The compensator K(s) shown in Fig.1 can be a diagonal matrix. Furthermore P(s) and G(s)P(s) are all stable for stable G(s) is considered. This implies P(s) is realizable. The transfer function matrix of the closed-loop system with K(s) and P(s) is

$$T(s) = [I_m + G(s)P(s)K(s))]^{-1}G(s)P(s)K(s)$$
(3)

The characteristic equation of the closed-loop system is

$$\Delta(s) = \det\{I + G(s)P(s)K(s)\}$$
(4)

and

$$\Delta(s) = \left[1 + \frac{\det(G(s))}{\det(G(0))} \left(\frac{K_p s + K_i}{s}\right) \left(\frac{T_N s + 1}{T_D s + 1}\right)\right]^m \equiv [\Delta_1(s)]^m$$
(5)

for $K(s) = I_m(K_P + K_i/s)(T_Ns + 1)/(T_Ds + 1)$. Then, one can solve $\Delta_1(s) = 0$ for finding parameters K_P , K_i , T_N and T_D to give wanted performance with analyzing the root locations on polar plane. It is complicated and cannot be applied to on-line computing and control process. Gain margin (*GM*) and phase margin (*PM* : in degree) are two performance indices to describe the performance of the compensated system. They can be applied easily to on-line tuning process. The values of *PM* and *GM* are maximal extra phase lag p_m and maximal gain multiplication g_m in loops to destabilize the closed-loop system. The characteristic equation is modified with p_m and g_m . It is

$$\Delta_{1}(s) = \left[1 + g_{m}e^{-j\pi P_{m}/180} \frac{\det(G(s))}{\det(G(0))} \left(\frac{K_{p}s + K_{i}}{s}\right) \left(\frac{T_{N}s + 1}{T_{D}s + 1}\right)\right]$$
(6)

for $g_m e^{-j\pi p_m/180}$ added to the on-diagonal loops.

The phase margin is *PM* for one root of Equation (6) just crossing the imaginary axis with phase lag p_m added in loop and $g_m = 1.0$. The magnitude of the crossing point in the imaginary axis is the gain-crossover frequency ω_{CRG} . The found gain margin is *GM* for two complementary roots just crossing the imaginary axis with gain multiplication g_m added in loop and $p_m=0^\circ$. The magnitude of the crossing points in the imaginary axis is the phase-crossover frequency ω_{CRP} .

The pure phase lag is impossible to be implemented in time response for on-line computing and control. The time delay $e^{-T_d s}$ can be used to replace phase lag $e^{-j\pi PM/180}$ in Equation(6).

The relay in loop always gives sustaining oscillation for stable process [1-3]. It gives the oscillating frequency ω_{CR} for finding frequency responses of relays and G(s). The relation between phase margin PM and time delay T_d is $PM \times \pi / 180 = T_d \omega_{CR}$ Based upon this discussion, the proposed on-line computer and control structure is shown in Fig.1, and the characteristic equation of the decoupled closed loop system G(s)P(s) with relays and time delays is in the form of

$$\Delta_{i}(j\omega_{CR}) = \left[1 + N_{i}(j\omega_{CR})e^{-i\tau_{d}\omega_{CR}}\frac{det(G(j\omega_{CR}))}{det(G(0))}\left(\frac{jK_{p}\omega_{CR} + K_{i}}{j\omega_{CR}}\right)\left(\frac{jT_{N}\omega_{CR} + 1}{jT_{D}\omega_{CR} + 1}\right)\right]$$
(7)

where $s = j\omega_{CR}$, i = 1, 2, ..., m and frequency response of relays are

$$N_{i}(j\omega_{CR}) = \int_{0}^{T} n_{i}(t)e^{-j2\pi/Tt} dt / (\int_{0}^{T} e_{i}(t)e^{-j2\pi/Tt} dt), i = 1, 2, ..., m$$
(8)

where $e_i(t)$ and $n_i(t)$ are input and output of the relay *i* respectively, *T* is the oscillating period and $\omega_{CR} = 2\pi/T$. Consider the closed-loop system with relays in loops only; i.e., $K(s) = I_m$. The frequency responses of the relays and G(s)P(s) shown in Fig.1 can be written by following equations:

$$N_i(j\omega_{CR}) = \int_0^T u_i(t)e^{-j2\pi/Tt} dt / (-\int_0^T y_i(t)e^{-j2\pi/Tt} dt), i = 1, 2, ..., m$$
(9a)

and

det
$$G(j\omega_{CR})/\det G(0) = \int_0^T y_i(t)e^{-j2\pi/Tt} dt \int_0^T u_i(t)e^{-j2\pi/Tt} dt, i = 1, 2, ..., m$$

(9b)

for

 $R = 0I_m$, $K(s) = I_m$, $e_i(t) = -y_i(t)$ and $u_i(t) = n_i(t)$. Equations (9a) and (9b) give $N_i(j\omega_{CRP}) \det(G(j\omega_{CRP})) / \det(G(0)) = -1$ for sustain oscillation. The oscillating frequency is the phase crossover frequency ω_{CRP} (i.e., cross -180°). This is the oscillating condition of the closed- loop system.

The characteristic equation of the closed-loop system is in the form of

$$\Delta_{i}(j\omega_{CRP}) = \left[1 + N_{i}(j\omega_{CRP})\frac{det(G(j\omega_{CRP}))}{det(G(0))}\left(\frac{jK_{p}\omega_{CRP} + K_{i}}{j\omega_{CRP}}\right)\left(\frac{jT_{N}\omega_{CRP} + 1}{jT_{D}\omega_{CRP} + 1}\right)\right]$$
(10)

The gain margin of the system can be evaluated as $GM = |N_i(j\omega_{CRP})|$ or

 $GM = |\det(G(0)/\det(G(j\omega_{CRP}))|]$. Eliminating the term $N_i(j\omega_{CRP})$ in Equation (10), the system gives gain margin $GM = |N_i(j\omega_{CRP})|$. The closed-loop system is stable for GM > 1 and unstable for $GM \le 1$. For example, one must reduce the loop gain (e.g., $K_p < 1$) to get stable system for $GM \le 1$. Equation (7) gives the gain margin $GM = |N(j\omega_{CR})|$ will be degraded for extra phase lag is added. The corresponding extra phase lag for GM = 1 gives the phase margin PM. The oscillating frequency at $GM \equiv 1$ is called the gain crossover frequency ω_{CRG} . Now, the characteristic equation becomes

$$\Delta_{i}(j\omega_{CRG}) = \left[1 + e^{-j\pi PM/180} \frac{\det(G(j\omega_{CRG}))}{\det(G(0))} \left(\frac{jK_{p}\omega_{CRG} + K_{i}}{j\omega_{CRG}}\right) \left(\frac{jT_{N}\omega_{CRG} + 1}{jT_{D}\omega_{CRG} + 1}\right)\right]$$
(11)

Therefore, gain/phase margins and phase/gain crossover frequencies can be found by introducing relays and time delays, and they can be used for on-line computing and control process. Taking the real and imaginary parts of Equations (10) and (11), four stability equations [17] are ready for finding four parameters K_P , K_i , T_N and T_D

mathematically.

The solution of them may be complex number. Complex number represents compensator cannot be realized. In this work, two tracking laws in real-time manner for finding parameters are developed and further simplification is made to reduce four parameters K_P , K_i , T_N and T_D to be two parameters (K_P and K_i) and avoid not real solutions of them.

Note that the plant model G(s) is generally not known exactly and may vary from producing environment changed (e.g. temperature). Therefore, real time computing process to find estimated model $\hat{G}(s)$ for computing and control is usually required. Once the estimated model $\hat{G}(s)$ found, the method stated above for finding pre-compensator P(s) and PI/Lead compensator can be applied. The computing and control configuration shown in Fig.1 including relays and delays. It will result in sustaining oscillation for stable G(s) [8]. Then, the Laplace-transformation of G(s) can be derived from computing Fourier integrations of input/output signals of relays [**11-15**]. The estimating process is given in the next paragraph.

Consider an $m \times m$ multivariable process in frequency domain as

$$\begin{bmatrix} y_1(j\omega) \\ \vdots \\ y_m(j\omega) \end{bmatrix} = \begin{bmatrix} g_{11}(j\omega) & \cdots & g_{1m}(j\omega) \\ \vdots & \ddots & \vdots \\ g_{m1}(j\omega) & \cdots & g_{mm}(j\omega) \end{bmatrix} \begin{bmatrix} u_1(j\omega) \\ \vdots \\ u_m(j\omega) \end{bmatrix}$$
(12)

The (i, j)th elements of the process are described by

$$g_{ij}(j\omega) = y_i(j\omega) / u_j(j\omega) \Big|_{u_k=0, k \neq j}$$
(13)

The above equation represents it needs m individual procedures for identifying whole elements of an $m \times m$ multivariable process. Wang [11] proposed a decentralized relay- feedback identification method. Although all relays are used simultaneously, but it still needs m procedures with perturbing the amplitude of relays (H). If the oscillations in m loops have common frequency ω_c , then the direct- current components and the first harmonics of these periodic waves are extracted as

$$\hat{g}_{ij}(0) = \frac{\int_{0}^{T} y_{i}(t)dt}{\int_{0}^{T} u_{j}(t)dt} \bigg|_{u_{k}=0, k \neq j}$$
(14)

and

$$\hat{g}_{ij}(j\omega_{c}) = \frac{\int_{0}^{T} y_{i}(t) e^{-j\omega_{c}t} dt}{\int_{0}^{T} u_{j}(t) e^{-j\omega_{c}t} dt} \bigg|_{u_{k}=0, k\neq j}$$
(15)

 $\hat{G}(0)$ and $\hat{G}(j\omega_c)$ can be found by Equations (14) and (15). For industry process, first order dynamic models with time delays (FODPT) are usually used for modeling and control [8-13]. The (i, j)th elements of he estimated model $\hat{G}(s)$ can be defined as

$$\hat{g}_{ij}(s) = \hat{g}_{ij}(0)e^{-L_{ij}s} / T_{ij}s + 1$$
(16)

and values of L_{ij} and T_{ij} are evaluated from $\hat{g}_{ij}(j\omega_c)$. The pre-compensator can be found by $\hat{P}(s) = adj (\hat{G}(s)) / \det(\hat{G}(0))$. Further on-line computing processes are developed to find parameters of PI/Lead compensator.

The completely on-line procedure for finding parameters of the PI/Lead compensator is partition into five steps and discussed in detail. They are given below:

Step 1: Find gain margin GM(0) and phase crossover frequency ω_{CRP0}

The compensator K(s) is first set be identity matrix and introducing the relays in loop only. Finding the oscillating period T(0), $\omega_{CRP0} = 2\pi/T(0)$ and calculating the equivalent gain $N_i(j\omega_{CRP0})$ of the relay described by Equation (8). The gain margin found defined is as $GM(0) = \sum_{i=1}^{m} |N_i(j\omega_{CRP0})| / m$. Averages of $|N_i(j\omega_{CRP})|$, i = 1, 2, ..., m is used in computing and control processes for responses of the plants have been balanced by the pre-compensators. Note that all parameters of P/PI/PID compensators by Ziegler-Nichols rules[15, 16] are given in this step. They need not sufficient process information but may give poor performance and robustness.

ZN(P) :
$$K_p = GM(0) / 2.0$$
;
ZN(PI) : $K_p = GM(0) / 2.2$ and $K_i = 1.2 / T(0)$;
ZN(PID) : $K_p = GM(0) * 0.60, K_i = 2.0 / T(0), K_D = T(0) / 8$.

They are developed from large number of simulations of different processes. Further tuning step gives below will give a robust result for PI/Lead compensators with gain and phase specifications.

Step 2: Find the proportional gain K_P for wanted gain margin is GM(1).

Using the gain margin found in step 1, the proportional gain $K_P = GM(0)/GM(1)$. The gain margin will become to be GM(1). The compensator in this step is $K(s) = K_P I_m$.

Step 3: Find the integration gain K_i for wanted gain margin is GM(2) with K_p

The selected value of GM(2) is always less than that of GM(1) for integration K_i/s in loop will destabilize the system. The tracking law for finding K_i is given below:

$$G_n(kT+T) = G_n(kT) \times [\alpha GM / GM(2) + (1-\alpha)]; \quad (17a)$$

$$K_i = G_n(kT + T) ; \tag{17b}$$

$$GM = \sum_{i=1}^{m} |\int_{0}^{T} u_{i}(t)e^{-j2\pi/T_{u}t} dt / \int_{0}^{T} y_{i}(t)e^{-j2\pi/T_{t}} dt | / m$$
(17c)

where T is the oscillating period , $G_n(kT)$ is a time

series and α is the adjustable parameter for tracking speed. The initial value $G_n(0)$ is set to be $K_{P}/10.0$ and value of α is greater than zero and less than one. Equation (17a) gives $G_n(kT+T) = G_n(kT)$ $GM = \sum_{i=1}^{m} |N_i(j\omega_{CRP})| / m = GM(2)$ after and $\omega_{CRP} = 2\pi / T$. The tracking law is a negative feedback loop for small GM/GM(2) ratio gives small value of K_i introduced into loop and large gain margin GM will be and large GM/GM(2)ratio gives large value of K_i introduced into loop and small gain margin GM will be. Therefore, Equation (17a) will give a steady-state value $G_n(kT)$ (i.e., K_i) after GM = GM(2). Note the gain margin is the absolute value of $N_i(j\omega_{CRP})$ described by Equation (8). The found compensator is $K(s) = (K_p + K_i / s)I_m$ in this step.

Step 4: Finding T_N and T_D from found phase margin PM(2) and gain crossover frequency ω_{CRG} with $(K_P + K_i / s)I_m$

The time lag T_d in loop is used for finding phase margin PM(2). The relationship of PM(2)and T_d is $PM(2) = 180T_d \omega_{CRG} / \pi$. The tracking law for finding corresponding maximal time lag T_d for PM(2) is

$$P_{n}(kT+T) = P_{n}(kT) \times [\beta GM/1.0 + (1-\beta)]$$
(18a)

$$T_d = P_n(kT + T); \qquad (18b)$$

$$PM(2) = 360T_d / T;$$
 (18c)

$$GM = \sum_{i=1}^{m} |\int_{0}^{T} u_{i}(t)e^{-j2\pi 2\pi t} dt / \int_{0}^{T} y_{i}(t)e^{-j2\pi 2\pi t} dt | /m$$
(18d)

where *T* is the oscillating period, $P_n(kT)$ is a time series and β is a parameter to adjust the tracking speed. The value of β is greater than zero and less than one. Equation (18a) gives $P_n(kT + T) = P_n(kT)$ after the wanted time lag $T_d \equiv T \times PM/360$ is found; i.e., GM = 1. Similar to the tracking law for finding the integration gain K_i , the tracking law is a negative feedback loop also for small GM/1.0 ratio gives small value of T_d introduced into loop and large gain margin GM will be and large GM/1.0 ratio gives large value of T_d introduced into loop and small gain margin GM will be. Therefore, the tracking law will give a steady- state value of T_d after GMconverged to be one and gives gain crossover frequency $\omega_{CRG} = 2\pi\pi/T$. Consider phase and gain of a lead compensator $Lead(s) = (T_N s + 1)/(T_D s + 1)$ with respect to the ratio of $(1/T_N)/\omega_{CRG}$ and $T_D = T_N/100$. $1/T_N$ is the corner frequency of the lead compensator. It gets maximal leading phase 26.28° and gain 1.118 (0.97dB) for $T_N = 1/2\omega_{CRG}$, and leading phase 13.89° and gain 1.036(0.264dB) for $T_N = 1/4\omega_{CRG}$. In this work, lead compensation with corner frequency equal to or greater than two will be added if the found PM(2) is not satisfactory. The overall compensator becomes $K(s) = [(K_P + K_i / s)(T_N s + 1)/(T_D s + 1)]I_m$. Note that found gain / phase margins will be greater than those of GM(2) and PM(2).

Step 5: Step response verifications for found PI/Lead compensators.

The tracking laws given by Equations (17) and (18) are used for finding the gain / phase margins (GM(3) / PM(3)) and phase / gain crossover frequencies of the controlled system with found parameters: K_p , K_i , T_N and T_D . If the wanted GM(3) and PM(3) are not satisfactory, then go back to Step 1 to restart a new computing process. If it is satisfactory, then switches back to normal operation process. The flow chart of the overall on-line computing and control algorithm is illustrated by Fig.2 and applied to three numerical examples. The first example is described by first order dynamic plus time delay model(FODPT). The second example is described by high-order dynamic model. The third example is a system with large different response times between channels. Pre-compensators will be all realized by FODPT models.

III. Numerical Examples

Example 1: Consider the Wood and Berry binary distillation column plant [18]:

$$G(s) = \begin{bmatrix} \frac{12.8}{16.7s+1}e^{-s} & \frac{-18.9}{21s+1}e^{-3s}\\ \frac{6.6}{10.9s+1}e^{-7s} & \frac{-19.4}{14.4s+1}e^{-3s} \end{bmatrix}$$
(19)

Estimating processes with relays (H=0.5) are shown in Fig.3; in which R_1 and R_2 are reference inputs and Y_1 and Y_2 are system outputs. The sustain oscillation frequency $\omega_{c1} = 0.439 rad/s$ for loop 1 closed with relay and time lag is 3.0 seconds. The time delay is used to slow down the oscillating frequency [1-3] for reducing computing efforts of Equations (14) and (15). Using Equations (14) and (15), the found $\hat{G}_{j1}(0)$, and $\hat{G}_{j1}(j\omega_{c1})$ are

$$\hat{G}_{j1}(0) = \begin{bmatrix} 12.8\\ 6.6 \end{bmatrix}$$
 (20a)

and

$$e^{-1.2987j}\hat{G}(0.4329j) = \begin{bmatrix} e^{-0.02837j} / 0.570\\ e^{3.730j} / 0.7105 \end{bmatrix}$$
(20b)

The sustain oscillation frequency $\omega_{c2} = 0.3066 rad/s$ for loop 2 closed with relay and time lag 3.0s. Using Equations (14) and (15), the found $\hat{G}_{j2}(0)$, and $\hat{G}_{j2}(j\omega_{c2})$ are

$$\hat{G}_{j2}(0) = \begin{bmatrix} -18.9\\ -19.4 \end{bmatrix}$$
 (21a)

and

$$e^{-0.9199j}\hat{G}(0.3066j) = \begin{bmatrix} e^{-0.1201j} / 0.3450\\ e^{-0.05147j} / 0.2335 \end{bmatrix}$$
(21b)

Using FODPT dynamic models given in Equation (16), we have

$$\hat{G}(s) = \begin{bmatrix} \frac{12.8}{16.695s+1} e^{-1.012s} \frac{-18.9}{21.014s+1} e^{-3.017s} \\ \frac{6.6}{10.895+1} e^{-7.009s} \frac{-19.4}{14.410s+1} e^{-3.017s} \end{bmatrix}$$
(22)

and

$$\hat{P}(s) = \frac{-1}{123.58} \begin{bmatrix} \frac{-19.4}{14.410s+1} e^{-2.005s} \frac{+18.9}{21.014s+1} e^{-2.005s} \\ \frac{-6.6}{10.895s+1} e^{-5.997s} \frac{12.8}{16.695s+1} \end{bmatrix}$$
(23)

The on-line computing for finding parameters of PI/Lead compensator is given below:

- **Step 1:** Oscillating period T(0) = 21.41s (i.e., $\omega_{CRP0} = 0.293rad / s$) and gain margin GM(0) = 9.04 are found with relays added.
- **Step 2:** Proportional gain $K_p = 3.013$ is found for the wanted gain margin $GM(1) = 3.0(9.54dB \ s)$.
- **Step 3:** Integration gain $K_i = 0.172$ and phase crossover frequency $\omega_{CRP} = 0.2 \ln a d/s$ are found for the wanted the gain margin $GM(2) = 2.5(\sim 8dBs).$
- **Step 4:** Phase margin $PM(2) = 27.99^{\circ}$ and $\omega_{CRG} = 0.123 rad / s$ are found for $(K_p, K_i) = (3.013, 0.172)$ and parameters of the lead compensator $T_N = 1/2\omega_{CRG} = 4.08$ and $T_D = 0.00408$ are evaluated.

Step 5: Final results are $PM(3) = 60.1^{\circ}, \omega_{CRG} =$

0.130*rad* / *s*,
$$GM(3) = 2.65$$
 (8.46*dBs*)
and $\omega_{CRP} = 0.439rad$ / *s*.

Final results and three other methods are presented for comparisons and showing the merit of the proposed method. They are Ziegler-Nichols method[4] for finding PI and PID compensators, and Wang's method[11] for finding cross multivariable PID compensator. Parameters of four found compensators are given below:

Proposed:

$$K_p = 3.0132, K_i = 0.172, T_N = 4.08 and T_D = 0.0408;$$

ZN(PI):

$$K_p = GM(0)/2.2 = 4.109$$
 and $K_i = 1.2/T(0) = 0.056$

ZN(PID): $K_p = GM(0) * 0.6 = 5.424, K_i = 2/T(0) = 0.034$ and $K_D = T(0)/8 = 2.676$

Wang's:

$$K(s) = \begin{bmatrix} 0.184(1+1/3.92s) & -0.0102(1+1/0.445s-0.804) \\ -0.0674(1-1/4.23s+0.796s) & -0.0660(1+1/4.25s) \end{bmatrix}$$

The ZN(PI) and ZN(PID) compensators are found after pre-compensator $\hat{P}(s)$ has been added to the system. Wang's compensator is applied to the system without $\hat{P}(s)$. The time responses of them are shown in Fig.4; in which R_1 and R_2 are reference inputs and Y_1 and Y_2 are system outputs. It shows the proposed method gives better performance and decoupling results than those of other three methods. Wang's method gives larger cross couplings than that of the proposed method. This is due to the phase crossover frequency was used for evaluating the cross compensator. Gain crossover frequency for decoupling is usually preferred.

Example 2. Consider the multivariable process given by Palmor et al. [19] as

$$G(s) = \begin{bmatrix} \frac{0.5}{(0.1s+1)^2(0.2s+1)^2} & \frac{-1}{(0.1s+1)(0.2s+1)^2} \\ \frac{1}{(0.1s+1)(0.2s+1)^2} & \frac{2.4}{(0.1s+1)(0.2s+1)^2(0.5s+1)} \end{bmatrix}$$
(24)

The elements of plant G(s) are described by four high-order dynamic models. Estimating processes with relays (H=0.5) are performed. The oscillation frequency $\omega_{c1}=0.8878rad/s$ for loop 1 closed with relay (H=0.5) and time lag 3.0s. Using Equations (14) and (15), the found $\hat{G}_{il}(0)$, and

$$\hat{G}_{j1}(j\omega_{c1}) \text{ are}$$

$$\hat{G}_{j1}(0) = \begin{bmatrix} 0.5\\ 1.0 \end{bmatrix}$$
(25a)
and

$$e^{-2.6634j} \hat{G}(0.8878j) = \begin{bmatrix} e^{-0.04617j} / 2.079 \\ e^{0.03939j} / 1.0360 \end{bmatrix}$$
(25b)

The oscillation frequency $\omega_{c2} = 0.8124 rad/s$ for loop 2 closed with relay and time lag 3.0s. The found $\hat{G}_{i2}(0)$, and $\hat{G}_{i2}(j\omega_{c2})$ are

$$\hat{G}_{j2}(0) = \begin{bmatrix} -1.0\\ 2.4 \end{bmatrix}$$
(26a)

and

$$e^{-2.4372j}\hat{G}(0.8124j) = \begin{bmatrix} e^{-2.838j} / 1.030\\ e^{-0.07952j} / 0.463 \end{bmatrix}$$
(26b)

The estimated model of the plant $\hat{G}(s)$ is

$$\hat{G}(s) = \begin{bmatrix} \frac{0.5}{0.32s+1} e^{-0.279s} & \frac{-1.0}{0.304s+1} e^{-0.196s} \\ \frac{1.0}{0.305s+1} e^{-0.196s} & \frac{2.4}{0.597s+1} e^{-0.409s} \end{bmatrix}$$
(27)

The pre-compensator $\hat{P}(s)$ is

$$\hat{P}(s) = \frac{1}{2.2} \begin{bmatrix} \frac{2.4}{0.597s+1} e^{-0.409s} & \frac{+1.0}{0.304s+1} e^{-0.196s} \\ \frac{-1.0}{0.305s+1} e^{-0.196s} & \frac{0.5}{0.32s+1} e^{-0.279s} \end{bmatrix}$$
(28)

The results of on-line computing procedures for finding parameters of the PI/Lead compensator are given below:

- **Step 1:** Oscillating period T(0) = 1.6197s (i.e., $\omega_{CRP0} = 3.879 rad / s$) and gain margin GM(0) = 4.25 are found with relays added.
- **Step 2:** Proportional gain $K_p = 4.251/3.0 = 1.417$ is found for the wanted gain margin GM(1) = 3.0 (9.54*dBs*).
- **Step 3:** Integral gain $K_i = 1.7808$ and phase crossover frequency $\omega_{CRP} = 3.174 rad/s$ are found for the wanted gain margin $GM(2) = 2.5(\sim 8dBs)$.
- **Step 4:** Phase margin $PM(2) = 45.9^{\circ}$ and $\omega_{CRG} = 1.727 rad/s$ are found for $(K_p, K_i) = (1.417, 1.7808)$ and parameters of the lead compensator $T_N = 1/1.414 \omega_{CRG} = 0.4095$ and $T_D = 0.00409$.

are evaluated.

Step 5: Final results are $PM(3) = 63.8^\circ$, $\omega_{CRG} =$

$$1.965rad / s$$
, $GM(3) = 3.82(11.6dBs)$ and
 $\omega_{CRP} = 5.51rad / s$.

Final results and three other methods are presented for comparisons and showing the merit of the proposed method. They are Ziegler-Nichols method[4] for finding PI and PID compensators, and Wang's method[11] for finding cross PID compensator. Parameters of four found compensators are given below:

Proposed:

 $K_p = 1.417$, $K_i = 1.7808$, $T_N = 0.4095$ and $T_D = 0.004095$ **ZN(PI) :** $K_p = 1.932$ and $K_i = 0.7409$

ZN(PID):

$$K_p = 2.551, K_i = 1.235 \text{ and } K_D = 0.203$$

Wang's:

$$K(s) = \begin{bmatrix} 2.83(1+1/0.285s) & 1.51(1+1/0.865s+0.0911s) \\ -3.25(1+1/0.785s+0.182s) & 0.667(1+1/0.776s) \end{bmatrix}$$

The time responses of them are shown in Fig.5; in which R_1 and R_2 are reference inputs and Y_1 and Y_2 are system outputs. It shows the proposed method gives better performance and decoupling results than those of other three on-line computing and control methods.

Example 3: Consider the solid-fuel boiler plant given by Johansson [11]

$$G(s) = \begin{bmatrix} \frac{-1}{10.0s+1} e^{-2s} & \frac{-1}{10s+1} \\ 0 & \frac{1}{60s+1} e^{-10s} \end{bmatrix}$$
(29)

Estimating processes with relays (H=0.5) are performed. The oscillation frequency $\omega_{cl} = 0.377 rad/s$ for loop 1 closed with relay and time lag 3.0s. Using Equations (14) and (15), the found $\hat{G}_{j1}(0)$ and $\hat{G}_{j1}(j\omega_{c1})$ are

$$\hat{G}_{j1}(0) = \begin{bmatrix} -1.0\\ 0.0 \end{bmatrix}$$
(30a)

and

$$e^{-1.131j}\hat{G}(0.377j) = \begin{bmatrix} e^{-0.05819j} / 3.887\\ 0 \end{bmatrix}$$
(30b)

The oscillation frequency $\omega_{c2} = 0.133 rad/s$ for loop 2 closed with relay and time lag 3.0s. The found $\hat{G}_{j2}(0)$ and $\hat{G}_{j2}(j\omega_{c2})$ are

$$\hat{G}_{j2}(0) = \begin{bmatrix} -1.0\\ +1.0 \end{bmatrix}$$
(31a)

and

$$e^{-0.3978j} \hat{G}(0.1326j) = \begin{bmatrix} e^{-1.324j} / 1.660\\ e^{-0.02913j} / 8.016 \end{bmatrix}$$
(31b)

The found $\hat{G}(s)$ and $\hat{P}(s)$ are

$$\hat{G}(s) = \begin{bmatrix} \frac{-1.0}{9.963s+1} e^{-2.011s} & \frac{-1.0}{9.992s+1} \\ 0 & \frac{1}{59.984s+1} e^{-10.009s} \end{bmatrix}$$
(32)

and

$$\hat{P}(s) = \begin{bmatrix} \frac{1}{59.984s + 1} e^{-10.009s} & \frac{+1.0}{9.992s + 1} \\ 0 & \frac{-1.0}{9.963s + 1} e^{-2.011s} \end{bmatrix}$$
(33)

The results of on-line computing procedures for finding parameters of PI/Lead compensator are given below:

- **Step 1:** Oscillating period T(0) = 72.99s (i.e., $\omega_{CRP0} = 0.0861rad/s$) and gain margin GM(0) = 6.94 are found with relays added.
- **Step 2:** Proportional gain $K_p = 2.314$ is found for the wanted gain margin GM(1) = 3.0(9.54dBs).
- **Step 3:** Integral gain $K_i = 0.0615$ and phase crossover frequency $\omega_{CRP} = 0.0666 \omega ad/s$ are found for the wanted gain margin $GM(2) = 2.5(\sim 8dBs)$.
- Step 4: Phase margin PM (2) = 26.76 ° and $\omega_{CRG} = 0.0408rad$ / s are found for $(K_p, K_i) = (2.314, 0.0615)$ and parameters of the lead compensator $T_N = 1/1.414\omega_{CRG}$ = 17.33 and $T_D = 0.1733$ are evaluated.
- Step 5: Final results are $PM(3) = 59.3^{\circ}$, $\omega_{CRG} = 0.049rad/s$, GM(3) = 2.505(7.988dBs)and $\omega_{CRP} = 0.143rad/s$.

Final results and three other methods are presented for comparisons and show the merit of the proposed method. They are Ziegler-Nichols method[4] for finding PI and PID compensators, and Wang's method[11] for finding cross PID compensator. Parameters of four found compensators are given below:

Proposed:

 $K_p \equiv 2.314, K_i = 0.0615, T_N = 17.33 \text{ and } T_D = 0.1733$ **ZN(PI)** : $K_p \equiv 3.155, K_i = 0.0163$ **ZN(PID)**: $K_p \equiv 4.165, K_i = 0.0274 \text{ and } K_D = 0.00685$

Wang's :

$$K(s) = \begin{bmatrix} 2.61(1+1/10s) & 3.08(1+1/58.8s+2.04s) \\ 0 & 3.14(1+1/60s) \end{bmatrix}$$

Simulation results are shown in Fig.6; in which R_1 and R_2 are reference inputs and Y_1 and Y_2 are system outputs. It shows the proposed method give better results than those of other methods. From Figs. 4 and 6, one can see that the ZN(PI) and ZN(PID) gave bad performance and robustness, Wang's gave bad results for decoupling method characteristics, and the proposed method gave better performance and decoupling characteristics simultaneously.

IV. Discussions

The pre-compensator described by Equation(1) decouples and balances the response times of each channels. Figs.4, 5 and 6 show the conclusions. Example 3 gives response of channel 1 is much faster than that of channel 2 of the uncompensated system. This is due to pre-compensator described by Equation (33) balances response times of two channels; i.e., introducing time lag to channel 1 to slow down time response. One can eliminate common delays(or dynamics) of each column of $\hat{P}(s)$, then the characteristics of the compensated system becomes

$$\Delta(s) = \prod_{k=1}^{m} \left\{ 1 + [G(s)\hat{P}(s)]_{kk} \left(\frac{K_{p,k}s + K_{i,k}}{s} \right) \left(\frac{T_{N,k}s + 1}{T_{D,k}s + 1} \right) \right\}$$
(34)

That is, it becomes m SISO system design problems. The design steps given in Section II can be applied. The pre-compensator $\hat{P}(s)$ of Example 3 can be reformulated as

$$\hat{P}(s) = \begin{bmatrix} \frac{1}{59.984s + 1} & \frac{+1.0}{9.992s + 1} \\ 0 & \frac{-1.0}{9.963s + 1} e^{-2.011s} \end{bmatrix}$$
(35)

The identification process for channels 1 and 2 give

 $K_{P,1} \equiv 2.167, K_{i,1} = 0.0420, T_{N,1} = 8.38$ and $T_{D,1} = 0.0838$ and

 $K_{P,2} \equiv 2.320, K_{i,1} = 0.0572 \;, \; T_{N,2} = 16.8 \; and \; T_{D,2} = 0.168$

The simulation results are shown in Fig.7; in which R_1 and R_2 are reference inputs and Y_1 and Y_2 are system outputs. ZN(PI), ZN(PID) and Wang's method are presented for comparison also. Fig.7 shows Equation (35) speed up response time of channel while keeping decoupling characteristics, ZN(PI) and ZN(PID) give bad performance, and Wang's method give bad decoupling characteristics.

V. Conclusions

In this literature, a systematic on-line computing and control algorithm has been developed for analyses and designs of multivariable processes with multiple time delays. Identifications were performed by introducing relays and delays in loops. The plant dynamics was identified for finding pre-compensators, and parameters of PI/Lead compensators are tuned with wanted gain/phase margins. The compensated systems gave wanted gain/phase margins and better decoupling characteristics than those of other on-line computing and control methods. Three numerical examples have illustrated effectives of the proposed method.

References

- K. J. Åström and T. Hägglund, Automatic tuning of simple regulators with specifications on phase and amplitude margins, Automatica, 20(1984) 645-651.
- K. J. Åström, T. Hägglund, PID Controllers: Theory, Design, and Tuning, 2nd Edition, Instrument Society of America, 1995.
- K. J. Åström and C. C. Hang, Towards intelligent PID control, Automatica, 28(1991) 1-9.
- S. H. Shen, J. S. Wu and C. C. Yu, Use of biased-relay feedback for system identification, AIChE J. 42(1996) 1174-1180.
- 5. J. G. Ziegler and N. B. Nichols, Optimum setting for automatic controller, Trans. of ASME, 65(1942) 433-444.
- S. W. Sung, I. B. Lee and B. K. Lee, On-line process identification and automatic tuning method for PID controllers, Chemical Engineering Science, 53(1998) 1847-1859.
- K. T. Tan, T. H. Lee and X. Jiang, On-line relay identification, assessment and tuning of PID controller, J. of Process Control, 11(2001) 483-496.
- S. Majhi, On-line PI control of stable process, J. of Process Control, 15(2005) 859-867.
- 9. C. Bissel, Control Engineering, Chapman and Hall, New York, 1994.

- S. Majhi and D. P. Atherton, Auto-tuning and controller design for process with small time delays, IEE Proc. Control Theory Application, 146(1999) 415-425.
- 11. Q. G. Wang, B. Zou, T. H. Lee and Q. Bi, Auto-tuning of multivariable PID controllers from decentralized relay feedback, Automatica, 33(1997) 319-330.
- 12. Q. G. Wang, Y. Zhang, M. S. Chiu, Decoupling internal model for multivariable systems with multiple time delays, Chemical Engineering Science, 57(2002) 115-124.
- Q. G. Wang, Y. Zhang, M. S. Chiu, Non-interacting control design for multivariable Industrial process, J. of Process Control, 13(2003) 253-265.
- 14. D. Semino and C. Scali, Improved identification and auto-tuning of PI controllers for MIMO process by relay techniques, J. Process Control, 8(1998) 219-227.
- 15. J. Ju, and M. S. Chiu, An on-line monitoring procedure for 2x2 and 3x3 full multivariable control systems, Chemical Engineering Science, 53(1998) 1277-1293.
- A. Linnemann and R. Maier, Decoupling by precompensation while maintaining stability, IEEE Trans. on Automatic Control, 38 (1993) 629-632.
- T. S. Tsay and K. W. Han, Diagonal dominance design of multivariable feedback control systems using the stability- equation method, J. Franklin Inst. 325(1988) 485-503.
- R. K. Wood and M. W. Berry, Terminal composition control of a binary distillation column, Chemical Engineering Science, 28(1973) 1707-1717.
- 19.Z. J. Palmor, Y. Halevi and N. Krasney, Automatic tuning of decentralized PID controllers for TITO process, Automatica, 31(1995) 1001-1010.

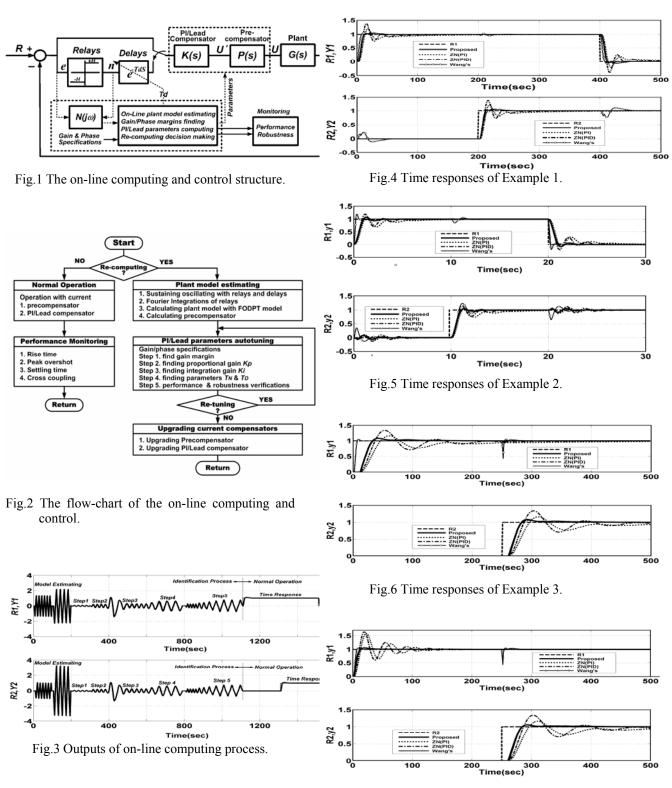


Fig.7 Time responses of Example 3 with two on-line processes.

特定增益與相位裕度下多變數程序之即時計算與控制

蔡添壽

國立虎尾科技大學飛機工程學系 助理教授

摘 要

在本篇文章中提出一個多變數程序即時解算與控制的方法,在系統化的解算程序與自動調整規則 中,求出前置補償器與比例積分/相位提前補償器,滿足事先設定的頻寬、相位裕度與解藕特性,不須 循環疊代求取比例積分/相位提前補償器中的參數,三個例子被用來展示提出的方法,由模擬結果比較 可得知,本法可以獲的較佳的系統性能與強健性。

關鍵詞:即時計算與控制、多變數程序。

國立虎尾科技大學飛機工程學系,雲林縣63208虎尾鎮文化路64號。 Tel:+886-5-631-5537 Fax:+886-5-631-2415 E-mail: tstsay@ nfu.edu.tw 國立虎尾科技大學學報 第二十六卷第一期 (民國九十六年三月):43-54