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Abstract 
This paper presents a stable adaptive control methodology for a class of nonlinear systems. By Lyapunov’s 

linearization method, the nonlinear system is first linearized on some operating points to produce linear dynamic 

models locally. Then, the Takagi-Sugeno fuzzy model (T-S fuzzy model) is adopted to aggregate these local 

models and formulates the approximation system. On the assumptions about the system’s properties, the fuzzy 

system can be viewed as a linear perturbed system. The adaptive sliding mode controller is derived to ensure the 

asymptotic stability of the control system. In contrast to parallel distributed compensation, the proposed method 

is simple and easy for practical application. Two simulation cases, inverted pendulum system and articulated 

two-link robot, are employed to demonstrate the effectiveness of the proposed approach on stabilization and 

tracking control. 
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I. Introduction 

In industry, most control systems are nonlinear 

and too complex to have their exact mathematic 

models. Mathematically these systems can be 

represented by a nominal model (linear or nonlinear) 

with uncertainty (structured or unstructured). The 

analysis and synthesis of those control systems 

consider not only stabilization problems but also the 

robustness in the presence of uncertainties. Over the 

past decades, the issue has drawn much research 

interest and many significant developments have 

been reported. Among various kinds of control 

studies, the fuzzy control is undoubtedly regarded as 

one of the most active and fruitful disciplines.  

The Takagi-Sugeno (T-S) fuzzy system, first 

introduced in[1], is known as a universal 

approximator for nonlinear system or function. 

Essentially it is an interpolation method. The 

physical nonlinear systems are assumed to be 

approximated by a set of linear or nonlinear models 

around some local operating points. These local 

models are then smoothly aggregated via the fuzzy 

inferences. Therefore, the T-S fuzzy model provides 

a compact and flexible mathematic description for 

complex or ill-defined system. Based on this idea, 

many nonlinear control approaches have been 

developed.  

Initially, sufficient condition for stabilization 

control deduced in[2] was established on the 

hypothesis that there must is a common matrix P for 

each fuzzy local systems. However, the common 

matrix P was not easy to obtain until Tanaka[3] 

introduced linear matrix inequality (LMI) method to 

solve this problem. In fact, the LMI is a very 

powerful tool for the analysis and design of control 

systems[4].  Most of the published results are based 

on LMI approach to derive sufficient conditions for 

the stabilization of fuzzy systems. However, the 

existence of the solution is not guaranteed. As the 

number of fuzzy rules increases or too many 

constraints are imposed, the solution could be 

infeasible[5]. 

In contrast to LMI’s method, the adaptive 

control method is considered as an alternative to 

dealing with the control of fuzzy systems. In 

particular, based on the universal approximation 

theorem and by incorporating fuzzy system into 

adaptive control scheme, the adaptive fuzzy control 

approaches are presented in[6, 7, 8]. Moreover, an 

adaptive fuzzy based controller combined with 

sliding mode control has been studied in[9, 10], 

where the controlled system is nonlinear and in 

controller companion form. 

In this paper, we propose a conventional control 

approach for nonlinear multivariable systems. The 

controlled system does not require being in controller 

companion form. When some assumptions regarding 

the properties of the system hold, the fuzzy system 

can be transformed into the conventional sliding 

mode control scheme. With the help of fuzzy basis 

function and adaptive mechanism, the system 

uncertainties and the corresponding upper bounds 

can be estimated. Based on the Lyapunov functional 

analysis, the adaptive laws are constructed to 

guarantee the stability of the control system. Finally, 

numerical examples are presented to verify the 

effectiveness of the proposed control method.  

 

II. Problem statements 

Consider a nonlinear system described by 

))(),(()( tutxftx =&   (1) 

where nRtx ∈)( is the state vector, pRtu ∈)( is the 

control input vector. It is assumed that 

))(),(( tutxf is continuously differentiable with 

respect to )(tx and )(tu  and has linear dynamics 
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around some operating points ),( ii ux . Then, by 

using a linearization method[11], we have 

q,1,2, i ),t(d)t(uB)t(xA)t(x iii L& =++=  (2) 

where 
ixxi xfA =∂∂= )/( , 

iuui ufB =∂∂= )/( , and 

)(tdi stands for the approximation error. Since the 

linearized models depict system dynamics in local 

region around the operating points, it is advisable to 

aggregate these models and formulate the 

approximation system by T-S fuzzy inference. With 

proper selection and definition of input variables and 

membership functions, the T-S fuzzy inferences are 

in the form of  

    .  q,2, ,1  l      

     (t)d)t(uB)t(xA)t(x        then

 M is )t(z and and M is )t(z If :R

lll

l
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++=   (3) 

where l
kM is the fuzzy set ),,2,1( jk L= and 

T
j tztztztz )](,),(),([)( 21 L= is the premise variable 

vector associated with the system states and inputs.  

    By center of gravity defuzzification, the output 

of fuzzy system is inferred as 
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grade of membership function l
iM corresponding 
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Then (4) becomes 
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It is obviously ∑
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q

l
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1
1)(μ and 0)( ≥zlμ for 

.  q,,2,1l L=  

    Inspired by the works of [8], we modify the 

fuzzy system (6) as 
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    From (7), it can be seen that the T-S fuzzy 

system is depicted as a perturbed linear system with 

the nominal matrices ),( oo BA , the perturbations 

)),,(),,(( xtBxtA ΔΔ  and the modeling error or 

disturbance ).,( xtD   

 

III. Design of adaptive sliding mode 
fuzzy control 

    To complete the derivation, we impose the 

following assumptions on system (7). 

Assumption 1. The pair ),( oo BA is completely 

controllable. 

Assumption 2. The state )(tx is available for 

measurement. 

Assumption 3. The perturbations x)) ΔB(t, x),  (ΔΔA(t  

and the modeling error x) D(t, are matched. That is, 

there exist matrices 

,:)(,:)( ppnnpn RRRFRRRE ×× →×⋅→×⋅ and
1:)( ×→×⋅ pn RRRG ,  such that   

 ),,(),( xtEBxtA o=Δ  

.  )x,t(GB)x,t(D ),x,t(FB)x,t(B oo ==Δ   (9) 

Based on the assumptions, the system (7) can be 

rewritten as 

.  ))x,t()t(u(B)t(xA)t(x oo ξ++=&    (10) 

where pRxt ∈),(ξ denotes the lumped uncertainty. 

    For the system with uncertainty, the sliding 
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mode control (SMC)[11] is a useful control strategy. 

It provides a systematic approach to solve the 

problem of maintaining stability and consistent 

performance. The design of SMC consists of two 

phases. The first phase is to construct an appropriate 

sliding surface so that the system conducted on the 

sliding surface will produce a desired behavior. That 

is, the system is invariant to the uncertainty or 

disturbance and consistent performance is achieved 

while the states are maintained on the surface. The 

second phase is to design the control law so that the 

sliding condition[11] is satisfied. In particular, once 

on the surface, the system trajectories will remain 

there for all the subsequent time. 

Since the uncertainty ξ  is assumed to be 

matched, we define the time-varying sliding surface 

as 

}0)(:{ ===Ω CxxSx    (11) 

where C is a np ×  constant matrix such that 

oCB is nonsingular and the reduced )( pn − order 

equivalent system restricted to the surface is 

asymptotically stable.  Consider the sliding 

condition 

2T SKSS −<&    (12) 

where K is a positive real number and ⋅ denote the 

Euclidean norm. 

    Differentiating )(xS with respect to time gives 

)),()(()(
)()(

xttuCBtxCA
txCxS

oo ξ++=
= &&

   (13) 

To satisfy the sliding condition, the control law is 

chosen as         

ξ−+−= − )()( 1 KSxCACBu oo    (14) 

Since there is an uncertainty ,ξ  the design of 

controller requires estimation of the uncertainty. 

Generally, this can be completed by using an 

adaptive mechanism to evaluate the norm value of 

uncertainty. However, when the system is complex, it 

is difficult to construct the adaptive mechanism 

because the relationship between measurement 

variables and system uncertainty is ambiguous. In 

this situation, the fuzzy inference is useful for 

manipulating adaptive estimation.   

    The idea that the fuzzy system is a universal 

approximator that can approximate any real 

continuous function on a compact set to an arbitrary 

accuracy is well known. Many explored adaptive 

fuzzy control approaches are based on this concept 

[6-10]. In the following derivation, we will use the 

fuzzy basis function to approximate the uncertainty 

ξ and develop the adaptive laws for estimation of the 

uncertainty and the corresponding upper bounds. 

    Consider the following Mamdani type fuzzy 

inference that is to approximate the thi element of 
ξ , iξ , as  

          .  r , ,2 ,1m ,D~ is         then
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  (15) 

where T
iriii ),,,( 21 θθθθ   L= is an adjustable 

parameter vector, imθ is the center of imD~  for 

,,,2,1 pi L=  and )(xω is called the fuzzy basis 

function. The estimation of ξ is given 

by )()|(ˆ xx Tωθθξ =  and .prR ×∈θ  Define an 

optimal parameter matrix as 

}),()|(ˆsup{minarg xtx
x

ξθξθ
θθ

−=
Ω∈

∗    (16) 

and assume         
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xxtx 21),()|(ˆ εεξθξ +≤−∗    (17) 

where 1ε and 2ε are unknown positive constants 

and will be estimated via adaptive mechanism. 

Choose the control law to be 

SCB
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x
KSxCACBu

TT
oTT

o
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21

1

ˆˆ

ˆ)()(
εε

ξ
+

−

−+−= −

   (18) 

where 1̂ε and 2ε̂ are the estimations for 1ε and 2ε  

and ⋅ for the matrix denotes the induced norm. 

Substituting (18) into (13) gives 
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where 

 ),|(ˆˆ ),|(ˆ)|(ˆ~ ∗∗∗ =−= θξξθξθξξ xxx  

.ˆ~ and ˆ~
222111 εεεεεε −=−=  Multiplying 

TS to the right side of (21) gives 

SCBxSCBx

CBSCBSSKSS
TT

o
TT

o

o
T

o
TT

)~~()(

)ˆ(~

2121

2
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Define the parameter error as θθθ −= ∗~  and 

choose the Lyapunov functional candidate  
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where 21  and , ηηηθ  are the adaptation rates. 

The time derivative of V(t) along the dynamics of S 

is            
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Notably, .~~
ωθωθωθξ TTT

=−= ∗  If the following 

adaptive laws are employed 
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then we have 
2)( SKtV −≤&   (24) 

Consequently, V(t) is a bounded function, which 

implies that 21 ˆ and ,ˆ ,~ , εεθS  are all bounded. 

From the definition of S one can conclude that the 

state x will be confined in certain range. To prove 

,)(lim 0=
∞→

tS
t

 we define )(1 tV as 

τττ dSKVtVtV
t

))()(()()( 2

01 ∫ +−= &   (25) 

It follows that 0)(1 ≥tV . Differentiating )(1 tV with 

respect to time gives 

2

2
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tSK
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Moreover, SKStV T &&& 2)(1 −=  is bounded. By using 

the Barbalat’s lemma[11], we have 0.S(t)
t
lim =
∞→

 

That implies 0x(t)
t
lim =
∞→

 and the closed-loop 

system is asymptotically stable.  
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Based on the above discussion, we may briefly 

summarize the design procedure for the controlling 

nonlinear multivariable systems. 

Step 1: Select certain operating points concerning 

with the system performance and perform 

linearization on these points to obtain the local linear 

models. 

Step 2: Choose appropriate linguistic variables and 

define the corresponding membership functions to 

build the T-S fuzzy model. 

Step 3: Calculate the nominal matrices ),( oo BA  

and examine the controllability. 

Step  4: Verify the matching condition(9). 

Step 5: Construct an appropriate sliding surface in 

which the reduced-order equivalent system will be 

asymptotically stable on this surface. 

Step 6: Apply the control law(18) and adjust the 

parameters 21 ˆ  and ˆ  , εεθ by adaptive law(23).  

 

IV. Simulation 

    In this section we take two examples to 

illustrate the design procedure and verify the 

effectiveness of the proposed algorithm. 

Example 1. The control objective is focused on 

balancing an inverted pendulum on a cart. The 

dynamic equations of the pendulum are given by  

)(cos3/4
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where 1x is the angle of the pendulum from the 

equilibrium position, 2x is the angular velocity, and 

u  is the force applied to the cart. The parameters are 

given as follows: 2/8.9 smg = the gravity constant, 

kgm 0.2= the mass of the pendulum, kgM 8= the 

mass of the cart, ml 0.12 = the length of the 

pendulum, and )./(1 Mma +=  

    The nonlinear system has linear models on 0 

and 
2
π

±   and  the  T - S  fuzzy  system  for 

approximation is defined as[12]:   
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The matrices 2121   and ,, , BBAA are the local 

linear models as following: 
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where ).88cos( o=β  Then, according to(10), we 

obtain the nominal model  
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Since the local linear models are in controllable 

canonical form and the uncertainties satisfy the 

matching condition, the adaptive sliding mode 

control can be applied. Define the sliding surface as 

].1[   λ=s The adaptive fuzzy mechanism for 

estimating ξ  is defined as 

5  ...,  2,  1,  l  ,D is ξ   then  ,M is χ If:R l
Ι1

Ι =~~
. 

The corresponding membership functions are plotted 

in Fig.1. The universe of discourse ]
2

,
2

[ ππ
−  is 

normalized over this range. Moreover, the proposed 

method is compared with the conventional parallel 

distributed compensation (PDC) with state feedback 

gains 2483.11]  13.1900[1 =K  and 

7.12]  33.3[2 =K , which are calculated by LMI’s 

method. 

    The initial value of θ is set to be        

1e-3*[1 1 –1 –1 –1]T, and the values of  1̂ε and 

2ε̂ are 0 and 1 respectively. The simulation results 

are plotted in Fig.2 and Fig.3, where solid line 

presents adaptive T-S control with 20,λ =  dash line 
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depicts adaptive T-S control with 10=λ , and 

dash-dot line stands for control by PDC. We choose 

two different values of λ to inspect the convergent 

rate of .1x  

 The simulation reveals that the large 

λ produces fast convergence and both can achieve 

stable control. 

Example 2. Consider a two-link articulated robot 

described by the following dynamic equations[11]: 
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The values of parameter used in the simulation are as 

follows:  
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Since the inertia matrix H is uniformly positive 

definite, the system dynamics can be rewritten as 
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We use T-S fuzzy model to present the system 

dynamics and apply adaptive sliding mode control to 

obtain the desired performance. 

First, the Coriolis torque term is linearized on 

certain operating points to build the linear model 
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Then, the T-S fuzzy model is defined as 
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for .,,2,1 ki L= In simulation, we choose three 

operating points, 1± and 0, for o
iθ  and iq& is set 

near zero ( == 21 qq && 1e-6 ). By some calculation, we 

have 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ξ
ξ

+⎥
⎦

⎤
⎢
⎣

⎡
τ
τ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

××
×−×−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

2

12

1

4

3

2

1

86

88

4

3

2

1

0
0

55.3
29.1

0
0

29.1
68.0
0
0

x
x
x
x

1047.710164.000
1099.61023.700

1000
0100

x
x
x
x

&

&

&

&

where ,qx  ,qx ,qx ,qx 24132211 && ====  and 1ξ and 

2ξ denote the uncertainties. The nominal system is 

controllable and the uncertainties satisfy matching 

condition. 

    The next step is to define the sliding surface. It 

is advisable to choose )(xS as 

xCxxS ⎥
⎦

⎤
⎢
⎣

⎡
==

100
010

)(
λ

λ
 

When the states are maintained on ),x(S the 

dynamics of the reduced-order equivalent system 

becomes 

.  
,

442

131

λχ−=χ=χ
λχ−=χ=χ

&

&  

Obviously, it is asymptotically stable.   
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    The adaptive fuzzy mechanism for the 

estimation of ξ  is given by 

.  5,,2,1l          

,D~ is  and D~ is  then ,M~ is q If:R l
22

l
11l2

l

L=

ξξ
 

The universe of discourse of 2q  and the 

corresponding membership functions are given in 

Fig.1 The initial values of parameters are chosen as 

T
⎥⎦
⎤

⎢⎣
⎡

=  
1-
1  

     
1  
1-

     
1  
1-

     
1  
1-

      
1
1

*3θ  

5ˆˆ 21 ==εε , and λ =50. 

    We first investigate a step response of the robot 

motion. The robot is initially at rest, 021 == qq , 

and then a step-input command 

)90q,60q( 2d1d
oo == is issued. The performances 

of position control errors and the corresponding input 

torques are plotted in Fig.4 and Fig.5, where solid 

line presents control by our method and dash line 

stands for PD control. In the simulation, our 

approach is compared with PD control described in 

[11]. It is shown that the control results of both 

approaches are stable. The next case is to examine 

the tracking ability. The robot has to follow desired 

trajectories  

)),2cos(1(301 tqd π−= o ))2cos(1(452 tqd π−= o . 

 The performances of tracking errors and the 

control torques are plotted in Fig.6 and Fig.7, where 

solid line presents control by our method, dash line 

depicts conventional sliding mode control[11], and 

dash-dot line stands for adaptive control[13]. We 

choose two different values of λ to inspect the 

convergent rate of .1x  It can be seen that our method 

has the best performance.  

Although the derivation is focused on the 

stabilization, it can easily be transformed into 

tracking control. In this situation, the sliding surface 

is modified as 

dχχχ,χC)χS( −== ~~~  

where dx denotes the desired trajectory. Moreover, 

the control law (18) is replaced by               

SCB
SCB
xˆˆˆ

)xCxCAKSx~CA()CB(u

TT
oTT

o

21

ddoo
1

o

ε+ε
−ξ−

−++−= − &

 

 
V. Conclusion 

  This paper presents a systematic design 

approach for controlling multivariable nonlinear 

system based on T-S fuzzy model. The concept is 

simple and easy to apply. In contrast to PDC control 

scheme, the proposed controller is constructed 

without considering the linear matrix inequalities. 

Therefore, there is no common P problem. When 

some assumptions regarding the properties of the 

system hold, the sliding mode control can be applied 

such that the asymptotic stability of the global 

system is ensured. The effectiveness of proposed 

approach is illustrated by computer simulations of 

the inverted pendulum and the two-link robot. 
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Fig.1 The membership functions 
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Fig.2 Response of 1x  
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Fig.3 Response of u(t) 

 
 
 
 
 
 
 
 
 
 
 

Fig.4 (a) Position error of link 1 

 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.4 (b) position error of link 2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 (a) Control torque of link 1 
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Fig.5 (b) control torque of link 2. 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.6 (a) Position error of link 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6(b) position error of link 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 (a) Control torque of link 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 (b) control torque of link 2. 
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多變數非線性系統應用 Takagi-Sugeno 模糊模式設計之

適應控制方法 
 

丁振聲 

國立虎尾科技大學電機工程學系 副教授 

 

摘   要 

本文對於多變數非線性系統提出一應用 Takagi-Sugeno 模糊模式設計之適應控制方法。系統根據

Lyapunov 的線性化理論先求出動作範圍的區域線性數學模式，再以模糊推論的方法導出 T-S 的模糊模

式，當此系統符合所設定的條件時，模糊模式即可解析成一個擾動的線性系統，而所推導的適應滑動模

式控制法則可以確保全域漸進穩定的控制成效。相較於一般的 PDC 控制結構，本文所提出的方法較為

簡單且能應用於實體控制。經由電腦模擬的結果，顯示此理論之正確性與實用性。 

 

關鍵字：Takagi-Sugeno 模糊模式、適應滑動模式控制法。 
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